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Answer  Figures 5.8(b) and 5.8(c) are known as
free-body diagrams. Figure 5.8(b) is the free-body
diagram of W and Fig. 5.8(c) is the free-body
diagram of point P.

Consider the equilibrium of the weight W.
Clearly,T

2
 = 6 × 10 = 60 N.

Consider the equilibrium of the point P under
the action of three forces - the tensions T

1
 and

T
2
, and the horizontal force 50 N.  The horizontal

and vertical components of the resultant force
must vanish separately :

T
1
 cos θ  =  T

2
  =  60 N

T
1
  sin  θ   =  50  N

which gives that

Note the answer does not depend on the length
of the rope  (assumed massless) nor on the point
at which the horizontal force is applied. 

5.9  COMMON FORCES IN MECHANICS

In mechanics, we encounter several kinds of
forces. The gravitational force is, of course,
pervasive.  Every object on the earth experiences
the force of gravity due to the earth. Gravity also
governs the motion of celestial bodies.  The
gravitational force can act at a distance without
the need of any intervening medium.

All the other forces common in mechanics are
contact forces.* As the name suggests, a contact
force on an object arises due to contact with some
other object: solid or fluid. When bodies are in
contact (e.g.  a book resting on a table, a system
of rigid bodies connected by rods, hinges and

other types of supports), there are mutual
contact forces (for each pair of bodies) satisfying
the third law.  The component of contact force
normal to the surfaces in contact is called
normal reaction.  The component parallel to the
surfaces in contact is called friction.  Contact
forces arise also when solids are in contact with
fluids.  For example, for a solid immersed in a
fluid, there is an upward bouyant force equal to
the weight of the fluid displaced. The viscous
force, air resistance, etc are also examples of
contact forces (Fig. 5.9).

Two other common forces are tension in a
string and the force due to spring. When a spring
is compressed or extended by an external force,
a restoring force is generated. This force is
usually proportional to the compression or
elongation (for small displacements). The spring
force F is written as F = – k x where x is the
displacement and k is the force constant. The
negative sign denotes that the force is opposite
to the displacement from the unstretched state.
For an inextensible string, the force constant is
very high. The restoring force in a string is called
tension. It is customary to use a constant tension
T throughout the string. This assumption is true
for a string of negligible mass.

In Chapter 1, we learnt that there are four
fundamental forces in nature.  Of these, the weak
and strong forces appear in domains that do not
concern us here. Only the gravitational and
electrical forces are relevant in the context of
mechanics. The different contact forces of
mechanics mentioned above fundamentally arise
from electrical forces.  This may seem surprising

* We are not considering,  for simplicity, charged and magnetic bodies. For these, besides gravity, there are

electrical and magnetic non-contact forces.

Fig. 5.9  Some examples of contact forces in mechanics.
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since we are talking of uncharged and non-
magnetic bodies in mechanics. At the microscopic
level, all bodies are made of charged constituents
(nuclei and electrons) and the various contact
forces arising due to elasticity of bodies, molecular
collisions and impacts, etc. can ultimately be
traced to the electrical forces between the charged
constituents of different bodies. The detailed
microscopic origin of these forces is, however,
complex and not useful for handling problems in
mechanics at the macroscopic scale.  This is why
they are treated as different types of forces with
their characteristic properties determined
empirically.

5.9.1  Friction

Let us return to the example of a body of mass m
at rest on a horizontal table. The force of gravity
(mg)  is cancelled by the normal reaction force
(N) of the table. Now suppose a force F is applied
horizontally to the body.  We know from
experience that a small  applied force may not
be enough to move the body.  But if the applied
force F were the only external force on the body,
it must move with acceleration F/m, however
small. Clearly, the body remains at rest because
some other force comes into play in the
horizontal direction and opposes the applied
force F, resulting in zero net force on the body.
This force f

s
 parallel to the surface of the body in

contact with the table is known as frictional
force, or simply friction (Fig. 5.10(a)).  The
subscript stands for static friction to distinguish
it from kinetic friction f

k
 that we consider later

(Fig. 5.10(b)).  Note that  static friction does not

Fig. 5.10 Static and sliding friction: (a)  Impending

motion of the body is opposed by static

friction. When external force exceeds the

maximum limit of static friction, the body

begins to move.  (b) Once the body is in

motion, it is subject to sliding or kinetic friction

which opposes relative motion between the

two surfaces in contact. Kinetic friction is

usually less than the maximum value of static

exist by itself.  When there is no applied force,
there is no static friction. It comes into play the
moment there is an applied force. As the applied
force F increases, f

s
 also increases, remaining

equal and opposite to the applied force (up to a
certain limit), keeping the body at rest. Hence, it
is called static friction.  Static friction opposes
impending motion. The term impending motion
means motion that would take place (but does
not actually take place) under the applied force,
if friction were absent.

We know from experience that as the applied
force exceeds a certain limit, the body begins to
move.  It is found experimentally that the limiting

value of static friction ( )
maxsf  is independent of

the area of contact and varies with the normal
force(N)  approximately as :

( )
maxs sf N= µ (5.13)

where µ
s 

is a constant of proportionality
depending only on the nature of the surfaces in
contact. The constant µ

s 
 is called the coefficient

of static friction.  The law of static friction may
thus be written as

f
s
  ≤  µ

s 
 N (5.14)

If the applied force F exceeds ( )
maxsf

 the body

begins to slide on the surface. It is found
experimentally that when relative motion has
started, the frictional force decreases from the

static maximum value ( )
maxsf . Frictional force

that opposes relative motion between surfaces
in contact is called kinetic or sliding friction and
is denoted by f

k 
.
  
Kinetic friction, like static

friction, is found to be independent of the area
of contact.  Further, it is nearly independent of
the velocity. It satisfies a law similar to that for
static friction:

k k=f Nµ (5.15)

where µ
k′
 the coefficient of kinetic friction,

depends only on the surfaces in contact. As
mentioned above, experiments show that µ

k
 is

less than µ
s
. When relative motion has begun,

the acceleration of the body according to the
second law is ( F – f

k
)/m.  For a body moving with

constant velocity, F = f
k
. If the applied force on

the body is removed, its acceleration is – f
k 
/m

and it eventually comes to a stop.
       The laws of friction given above do not have
the status of fundamental laws like those for
gravitational, electric and magnetic forces. They
are empirical relations that are onlyfriction.
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approximately true.  Yet they are very useful in
practical calculations in mechanics.

Thus, when two bodies are in contact, each
experiences a contact force by the other. Friction,
by definition, is the component of the contact force
parallel to the surfaces in contact, which opposes
impending or actual relative motion between the
two surfaces. Note that it is not motion, but
relative motion that the frictional force opposes.
Consider a box lying in the compartment of a train
that is accelerating.  If the box is stationary
relative to the train, it is in fact accelerating along
with the train. What forces cause the acceleration
of the box?  Clearly, the only conceivable force in
the horizontal direction is the force of friction. If
there were no friction, the floor of the train would
slip by and the box would remain at its initial
position due to inertia (and hit the back side of
the train). This impending relative motion is
opposed by the static friction f

s
. Static friction

provides the same acceleration to the box as that
of the train, keeping it stationary relative to the
train.

Example 5.7 Determine the maximum
acceleration of the train in which a box
lying on its floor will remain stationary,
given that the co-efficient of static friction
between the box and the train’s floor is
0.15.

Answer  Since the acceleration of the box is due
to the static friction,

ma  =  f
s
 ≤ µ

s
 N  =  µ

s
  m g

i.e.   a  ≤  µ
s
 g

∴ a
max

 =  µ
s 
g  = 0.15  x 10 m s–2

= 1.5  m s–2  

Example 5.8  See Fig. 5.11. A mass of 4 kg
rests on a horizontal plane. The plane is
gradually inclined until at an angle θ  =  15°
with the horizontal, the mass just begins to
slide. What is the coefficient of static friction
between the block and the surface ?

Fig. 5.11

Answer  The forces acting on a block of mass m
at rest on an inclined plane are (i) the weight
mg acting vertically downwards (ii) the normal
force N of the plane on the block, and (iii) the
static frictional force f

s
 opposing the impending

motion. In equilibrium, the resultant of these
forces must be zero.  Resolving the weight mg

along the two directions shown, we have
m g sin θ  =  f

s
   ,     m g  cos θ    =  N

As θ  increases, the self-adjusting frictional force
f
s
 increases until at θ = θ

max
,  f

s
 achieves its

maximum value, ( )
maxsf = µ

s
 N.

Therefore,

tan θ
max

  =  µ
s
  or  θ

max
  =  tan–1  µ

s

When  θ  becomes just a little more than  θ
max

 ,
there is a small net force on the block and it
begins to slide.  Note that  θ

max
 depends only on

µ
s
 and is  independent of the mass of the block.

For θ
max

   =  15°,
µ

s
      =  tan 15°

 =  0.27 

Example 5.9  What is the acceleration of
the block  and  trolley system shown in a
Fig. 5.12(a), if the coefficient of kinetic friction
between the trolley and the surface is 0.04?
What is the tension in the string? (Take g =
10 m s-2).  Neglect the mass of the string.

(a)

(b) (c)

Fig. 5.12
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is the reason why discovery of the wheel has
been a major milestone in human history.

Rolling friction again has a complex origin,
though somewhat different from that of static
and sliding friction. During rolling, the surfaces
in contact get momentarily deformed a little, and
this results in a finite area (not a point) of the
body being in contact with the surface.  The net
effect is that the component of the contact force
parallel to the surface opposes motion.

We often regard friction as something
undesirable. In many situations, like in a
machine with different moving parts, friction
does have a negative role. It opposes relative
motion and thereby dissipates power in the form
of heat, etc. Lubricants are a way of reducing
kinetic friction in a machine. Another way is to
use ball bearings between two moving parts of a
machine [Fig. 5.13(a)]. Since the rolling friction
between ball bearings and the surfaces in
contact is very small, power dissipation is
reduced. A thin cushion of air maintained
between solid surfaces in relative motion is
another effective way of reducing friction (Fig.
5.13(a)).

In many practical situations, however, friction
is critically needed. Kinetic friction that
dissipates power is nevertheless important for
quickly stopping relative motion. It is made use
of by brakes in machines and automobiles.
Similarly, static friction is important in daily
life.  We are able to walk because of friction.  It
is impossible for a car to move on a very slippery
road. On an ordinary road, the friction between
the tyres and the road provides the necessary
external force to accelerate the car.

Answer  As the string is inextensible, and the
pully is smooth, the 3 kg block and the 20 kg
trolley both have same magnitude of
acceleration.  Applying second law to motion of
the block (Fig. 5.12(b)),

30 – T  = 3a

Apply the second law to motion of the trolley (Fig.
5.12(c)),

T – f
k
  =  20 a.

Now      f
k

= µ
k
 N,

Here        µ
k

= 0.04,
     N   =  20 x 10

= 200 N.
Thus the equation for the motion of the trolley is

T – 0.04 x 200 = 20 a Or  T – 8 = 20a.

These equations give a = 
22

23

 m s –2 = 0.96 m s-2

and T  = 27.1 N.                                                 

Rolling friction

A body like a ring or a sphere rolling without
slipping over a horizontal plane will suffer no
friction, in principle. At every instant, there is
just one point of contact between the body and
the plane and this point has no motion relative
to the plane. In this ideal situation, kinetic or
static friction is zero and the body should
continue to roll with constant velocity.  We know,
in practice, this will not happen and some
resistance to motion (rolling friction) does occur,
i.e. to keep the body rolling, some applied force
is needed. For the same weight, rolling friction
is much smaller (even by 2 or 3 orders of
magnitude) than static or sliding friction.  This

Fig. 5.13 Some ways of reducing friction. (a) Ball bearings placed between moving parts of a machine.

(b) Compressed cushion of air between surfaces in relative motion.
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5.10  CIRCULAR MOTION

We have seen in Chapter 4 that acceleration of
a body moving in a circle of radius R  with uniform
speed v is v2/R directed towards the centre.
According to the second law, the force f

c
 providing

this acceleration is :

              

2

c

mv
f =

R
(5.16)

where m is the mass of the body.  This force
directed forwards the centre is called the
centripetal force. For a stone rotated in a circle
by a string, the centripetal force is provided by
the tension in the string.  The centripetal force
for motion of a planet around the sun is the

is the static friction that provides the centripetal
acceleration. Static friction opposes the
impending motion of the car moving away from
the circle. Using equation (5.14) & (5.16) we get
the result

= ≤
2

s

mv
f N

R
µ

2 s
s

RN
v Rg

m

µ
µ≤ = [N = mg]

which is independent of the mass of the car.
This shows that for a given value of µ

s
 and R,

there is a maximum speed of circular motion of
the car possible, namely

max sv Rgµ=       (5.18)

(a) (b)

Fig. 5.14  Circular motion of a car on (a) a level road, (b) a banked road.

gravitational force on the planet due to the sun.
For a car taking a circular turn on a horizontal
road, the centripetal force is the force of friction.

The circular motion of a car on a flat and
banked road give interesting application of the
laws of motion.

Motion of a car on a level road

Three forces act on the car (Fig. 5.14(a):
(i) The weight of the car, mg

(ii) Normal reaction, N
(iii) Frictional force, f
As there is no acceleration in the vertical
direction
N – mg = 0
N = mg      (5.17)
The centripetal force required for circular motion
is along the surface of the road, and is provided
by the component of the contact force between
road and the car tyres along the surface. This
by definition is the frictional force. Note that it

Motion of a car on a banked road

We can reduce the contribution of friction to the
circular motion of the car if the road is banked
(Fig. 5.14(b)). Since there is no acceleration along
the vertical direction, the net force along this
direction must be zero. Hence,

N cos θ  = mg + f sin θ         (5.19a)

The centripetal force is provided by the horizontal
components of N and f.

N sin θ  + f cos θ  = 
2mv

R
                (5.19b)

But f sNµ≤

Thus to obtain v
max 

 we put

sf Nµ= .

Then Eqs. (5.19a) and (5.19b) become

N cos θ  = mg + sNµ  sin θ     (5.20a)
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N sin θ  + sNµ cos θ  = mv2/R                 (5.20b)

From Eq. (5.20a), we obtain

– s

mg
N

cos sinθ µ θ
=

Substituting value of N in Eq. (5.20b), we get

( ) 2
max

–

s

s

mg sin cos mv

cos sin R

+
=

θ µ θ

θ µ θ

or 

1

2

max
1 –

s

s

tan
v Rg

tan

µ θ

µ θ

 +
=  
 

(5.21)

Comparing this with Eq. (5.18) we see that
maximum possible speed of a car on a banked
road is greater than that on a flat road.

For µs =  0  in  Eq. (5.21 ),
v

o  
=

  
( R g  tan θ ) ½ (5.22)

At this speed, frictional force is not needed at all
to provide the necessary centripetal force.
Driving at this speed on a banked road will cause
little wear and tear of the tyres. The same
equation also tells you that for v < v

o
, frictional

force will be up the slope and that a car can be
parked only if tan θ  ≤  µ

s
.

Example  5.10  A cyclist speeding at
18 km/h on a level road takes a sharp
circular turn of radius 3 m without reducing
the speed. The co-efficient of static friction
between the tyres and the road is 0.1. Will
the cyclist slip while taking the turn?

Answer   On an unbanked road, frictional force
alone can provide the centripetal force needed
to keep the cyclist moving on a circular turn
without  slipping. If the speed is too large, or if
the turn is too sharp (i.e. of too small a radius)
or both, the frictional force is not sufficient to
provide the necessary centripetal force, and the
cyclist slips. The condition for the cyclist not to
slip is given by Eq. (5.18) :

v2  ≤  µ
s
 R g

Now, R = 3 m,  g = 9.8 m s-2,  µ
s
 = 0.1.  That is,

µ
s
 R g = 2.94 m2 s-2. v = 18  km/h = 5  m s-1; i.e.,

v2 = 25  m2 s-2.  The condition is not obeyed.
The cyclist will slip while taking the circular
turn. 

Example 5.11 A circular racetrack of
radius 300 m is banked at an angle of 15°.
If the coefficient of friction between the
wheels of a race-car and the road is 0.2,
what is the (a) optimum speed of the race-
car to avoid wear and tear on its tyres, and
(b) maximum permissible speed to avoid
slipping ?

Answer  On a banked road, the horizontal
component of the normal force and the frictional
force contribute to provide centripetal force to
keep the car moving on a circular turn without
slipping.  At the optimum speed, the normal
reaction’s component is enough to provide the
needed centripetal force, and the frictional force
is not needed.  The optimum speed v

o
 is given by

Eq.  (5.22):
v

O
  =  (R g tan θ)1/2

Here R  =  300 m,  θ  =  15°,  g  =  9.8  m s-2;  we
have

v
O
  =  28.1  m s-1.

The maximum permissible speed v
max

 is given by
Eq. (5.21):



5.11  SOLVING PROBLEMS IN MECHANICS

The three laws of motion that you have learnt in
this chapter are the foundation of mechanics.
You should now be able to handle a large variety
of problems in mechanics.  A typical problem in
mechanics usually does not merely involve a
single body under the action of given forces.
More often, we will need to consider an assembly
of different bodies exerting forces on each other.
Besides, each body in the assembly experiences
the force of gravity.  When trying to solve a
problem of this type, it is useful to remember
the fact that we can choose any part of the
assembly and apply the laws of motion to that
part provided  we include all forces on the chosen
part due to the  remaining parts of the assembly.
We may call the chosen part of the assembly as
the system and the remaining part of the
assembly (plus any other agencies of forces) as
the environment. We have followed the same
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method in solved examples. To handle a typical
problem in mechanics systematically, one
should use the following steps :
(i) Draw a diagram showing schematically the

various parts of the assembly of bodies, the
links, supports, etc.

(ii) Choose a convenient part of the assembly
as one system.

(iii) Draw a separate diagram which shows this
system and all the forces on the system by
the remaining part of the assembly.  Include
also the forces on the system by other
agencies. Do not include the forces on the
environment by the system.  A diagram of
this type is known as ‘a free-body diagram’.
(Note this does not imply that the system
under consideration is without a net force).

(iv) In a free-body diagram, include information
about forces (their magnitudes and
directions) that are either given or you are
sure of (e.g., the direction of tension in a
string along its length).  The rest should be
treated as unknowns to be determined using
laws of motion.

(v) If necessary, follow the same procedure for
another choice of the system.  In doing so,
employ Newton’s third law.  That is, if in the
free-body diagram of A, the force on A due to
B is shown as F, then in the free-body
diagram of B, the force on B due to A should
be shown as –F.

The following example illustrates the above
procedure :

Example 5.12 See Fig. 5.15. A wooden
block of mass 2 kg rests on a soft horizontal
floor.  When an iron cylinder of mass 25 kg
is placed on top of the block, the floor yields
steadily and the block and the cylinder
together go down with an acceleration of
0.1 m s–2.  What is the action of the block
on the floor (a) before and (b) after the floor
yields ? Take g = 10 m s–2. Identify the
action-reaction pairs in the problem.

Answer

(a) The block is at rest on the floor. Its free-body
diagram shows two forces on the block, the
force of gravitational attraction by the earth
equal to 2 × 10 = 20 N; and the normal force
R of the floor on the block. By the First Law,

the net force on the block must be zero i.e.,
R = 20 N.  Using third law the action of the
block (i.e. the force exerted on the floor by
the block) is equal to 20 N and directed
vertically downwards.

(b) The system (block + cylinder) accelerates
downwards with 0.1 m s-2. The free-body
diagram of the system shows two forces on
the system : the force of gravity due to the
earth (270 N); and the normal force R ′ by the
floor.  Note, the free-body diagram of the
system does not show the internal forces
between the block and the cylinder.  Applying
the second law to the system,

270 – R′   =  27 × 0.1N
                 ie. R′   =  267.3 N

Fig. 5.15

By the third law, the  action  of the system on
the floor is equal to 267.3 N vertically downward.

Action-reaction pairs

For (a): (i) the force of gravity (20 N) on the block
by the earth (say, action); the force of
gravity on the earth by the block
(reaction) equal to 20 N directed
upwards (not shown in the figure).
(ii) the force on the floor by the block
(action); the force on the block by the
floor (reaction).

For (b): (i) the force of gravity (270 N) on the
system by the earth (say, action); the
force of gravity on the earth by the
system (reaction), equal to 270 N,
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directed upwards (not shown in the
figure).
(ii) the force on the floor by the system
(action); the force on the system by the
floor (reaction).  In addition, for (b), the
force on the block by the cylinder and
the force on the cylinder by the block
also constitute an action-reaction pair.

The important thing to remember is that an
action-reaction pair consists of mutual forces
which are always equal and opposite between
two bodies.  Two forces on the same body which
happen to be equal and opposite can never
constitute an action-reaction pair. The force of

gravity on the mass in (a) or (b) and the normal
force on the mass by the floor are not action-
reaction pairs. These forces happen to be equal
and opposite for (a) since the mass is at rest.
They are not so for case (b), as seen already.
The weight of the system is 270 N, while the
normal force R′ is 267.3 N. 

The practice of drawing free-body diagrams is
of great help in solving problems in mechanics.
It allows you to clearly define your system and
consider all forces on the system due to objects
that are not part of the system itself.  A number
of exercises in this and subsequent chapters will
help you cultivate this practice.

SUMMARY

1. Aristotle’s view that a force is necessary to keep a body in uniform motion is wrong.  A
force is necessary in practice to counter the opposing force of friction.

2. Galileo extrapolated simple observations on motion of bodies on inclined planes, and
arrived at the law of inertia.  Newton’s first law of motion is the same law rephrased
thus: “Everybody continues to be in its state of rest or of uniform motion in a straight line,

unless compelled by some external force to act otherwise”.  In simple terms, the First Law
is “If external force on a body is zero, its acceleration is zero”.

3. Momentum (p ) of a body is the product of its mass (m) and velocity (v) :
p  =  m v

4. Newton’s second law of motion :
The rate of change of momentum of a body is proportional to the applied force and takes

place in the direction in which the force acts.  Thus

d

d
k k m 

t
= =

p
F a

where F is the net external force on the body and a its acceleration. We set the constant
of proportionality k = 1 in SI units.  Then

d

d
m

t
= =

p
F a

The SI unit of force is newton : 1 N = 1 kg m s-2.

(a) The second law is consistent with the First Law (F = 0 implies a = 0)
(b) It is a vector equation
(c) It is applicable to a particle, and also to a body or a system of particles, provided  F

is the total external force on the system and a  is the acceleration of the system as
a whole.

(d) F at a point at a certain instant determines a at the same point at that instant.
That is the Second Law is a local law; a at an instant does not depend on the
history of motion.

5. Impulse is the product of force and time which equals change in momentum.
The notion of impulse is useful when a large force acts for a short time to produce a
measurable change in momentum. Since the time of action of the force is very short,
one can assume that there is no appreciable change in the position of the body during
the action of the impulsive force.

6. Newton’s third law of motion:
To every action, there is always an equal and opposite reaction
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